solarium/OS/uc/lib/lib_mem.h
2021-04-15 21:07:13 +03:00

616 lines
34 KiB
C
Raw Permalink Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
*********************************************************************************************************
* uC/LIB
* CUSTOM LIBRARY MODULES
*
* (c) Copyright 2004-2007; Micrium, Inc.; Weston, FL
*
* All rights reserved. Protected by international copyright laws.
*
* uC/LIB is provided in source form for FREE evaluation, for educational
* use or peaceful research. If you plan on using uC/LIB in a commercial
* product you need to contact Micrium to properly license its use in your
* product. We provide ALL the source code for your convenience and to
* help you experience uC/LIB. The fact that the source code is provided
* does NOT mean that you can use it without paying a licensing fee.
*
* Knowledge of the source code may NOT be used to develop a similar product.
*
* Please help us continue to provide the Embedded community with the finest
* software available. Your honesty is greatly appreciated.
*********************************************************************************************************
*/
/*
*********************************************************************************************************
*
* STANDARD MEMORY OPERATIONS
*
* Filename : lib_mem.h
* Version : V1.24
* Programmer(s) : ITJ
*********************************************************************************************************
* Note(s) : (1) NO compiler-supplied standard library functions are used in library or product software.
*
* (a) ALL standard library functions are implemented in the custom library modules :
*
* (1) \<Custom Library Directory>\lib*.*
*
* (2) \<Custom Library Directory>\Ports\<cpu>\<compiler>\lib*_a.*
*
* where
* <Custom Library Directory> directory path for custom library software
* <cpu> directory name for specific processor (CPU)
* <compiler> directory name for specific compiler
*
* (b) Product-specific library functions are implemented in individual products.
*********************************************************************************************************
*/
/*
*********************************************************************************************************
* MODULE
*********************************************************************************************************
*/
#ifndef LIB_MEM_MODULE_PRESENT
#define LIB_MEM_MODULE_PRESENT
/*$PAGE*/
/*
*********************************************************************************************************
* INCLUDE FILES
*
* Note(s) : (1) The following common software files are located in the following directories :
*
* (a) \<Custom Library Directory>\lib*.*
*
* (b) (1) \<CPU-Compiler Directory>\cpu_def.h
*
* (2) \<CPU-Compiler Directory>\<cpu>\<compiler>\cpu*.*
*
* where
* <Custom Library Directory> directory path for custom library software
* <CPU-Compiler Directory> directory path for common CPU-compiler software
* <cpu> directory name for specific processor (CPU)
* <compiler> directory name for specific compiler
*
* (2) Compiler MUST be configured to include the '\<Custom Library Directory>\uC-LIB\',
* '\<CPU-Compiler Directory>\' directory, & the specific CPU-compiler directory as
* additional include path directories.
*
* (3) NO compiler-supplied standard library functions SHOULD be used.
*********************************************************************************************************
*/
#include <cpu.h>
#include <lib_def.h>
#include <app_cfg.h>
/*
*********************************************************************************************************
* EXTERNS
*********************************************************************************************************
*/
#ifdef LIB_MEM_MODULE
#define LIB_MEM_EXT
#else
#define LIB_MEM_EXT extern
#endif
/*$PAGE*/
/*
*********************************************************************************************************
* DEFINES
*********************************************************************************************************
*/
/*
*********************************************************************************************************
* DATA TYPES
*********************************************************************************************************
*/
/*
*********************************************************************************************************
* GLOBAL VARIABLES
*********************************************************************************************************
*/
/*$PAGE*/
/*
*********************************************************************************************************
* MACRO'S
*********************************************************************************************************
*/
/*
*********************************************************************************************************
* MEMORY DATA VALUE MACRO'S
*
* Note(s) : (1) (a) Some variables & variable buffers to pass & receive data values MUST start on appropriate
* CPU word-aligned addresses. This is required because most word-aligned processors are more
* efficient & may even REQUIRE that multi-octet words start on CPU word-aligned addresses.
*
* (1) For 16-bit word-aligned processors, this means that
*
* all 16- & 32-bit words MUST start on addresses that are multiples of 2 octets
*
* (2) For 32-bit word-aligned processors, this means that
*
* all 16-bit words MUST start on addresses that are multiples of 2 octets
* all 32-bit words MUST start on addresses that are multiples of 4 octets
*
* (b) However, some data values macro's appropriately access data values from any CPU addresses,
* word-aligned or not. Thus for processors that require data word alignment, data words can
* be accessed to/from any CPU address, word-aligned or not, without generating data-word-
* alignment exceptions/faults.
*********************************************************************************************************
*/
/*$PAGE*/
/*
*********************************************************************************************************
* MEM_VAL_GET_xxx()
*
* Description : Decode data values from any CPU memory address.
*
* Argument(s) : addr Lowest CPU memory address of data value to decode (see Notes #2 & #3a).
*
* Return(s) : Decoded data value from CPU memory address (see Notes #1 & #3b).
*
* Caller(s) : various.
*
* Note(s) : (1) Decode data values based on the values' data-word order in CPU memory :
*
* MEM_VAL_GET_xxx_BIG() Decode big- endian data values -- data words' most
* significant octet @ lowest memory address
* MEM_VAL_GET_xxx_LITTLE() Decode little-endian data values -- data words' least
* significant octet @ lowest memory address
* MEM_VAL_GET_xxx() Decode data values using CPU's native or configured
* data-word order
*
* See also 'cpu.h CPU WORD CONFIGURATION Note #2'.
*
* (2) CPU memory addresses/pointers NOT checked for NULL.
*
* (3) (a) MEM_VAL_GET_xxx() macro's decode data values without regard to CPU word-aligned addresses.
* Thus for processors that require data word alignment, data words can be decoded from any
* CPU address, word-aligned or not, without generating data-word-alignment exceptions/faults.
*
* (b) However, any variable to receive the returned data value MUST start on an appropriate CPU
* word-aligned address.
*
* See also 'MEMORY DATA VALUE MACRO'S Note #1'.
*
* (4) MEM_VAL_COPY_GET_xxx() macro's are more efficient than MEM_VAL_GET_xxx() macro's & are
* also independent of CPU data-word-alignment & SHOULD be used whenever possible.
*
* See also 'MEM_VAL_COPY_GET_xxx() Note #4'.
*
* (5) The 'CPU_CFG_ENDIAN_TYPE' pre-processor 'else'-conditional code SHOULD never be compiled/
* linked since each 'cpu.h' SHOULD ensure that the CPU data-word-memory order configuration
* constant (CPU_CFG_ENDIAN_TYPE) is configured with an appropriate data-word-memory order
* value (see 'cpu.h CPU WORD CONFIGURATION Note #2'). The 'else'-conditional code is
* included as an extra precaution in case 'cpu.h' is incorrectly configured.
*********************************************************************************************************
*/
#define MEM_VAL_GET_INT08U_BIG(addr) (((CPU_INT08U)(*(((CPU_INT08U *)(addr)) + 0))) << (0 * DEF_OCTET_NBR_BITS))
#define MEM_VAL_GET_INT16U_BIG(addr) ((((CPU_INT16U)(*(((CPU_INT08U *)(addr)) + 0))) << (1 * DEF_OCTET_NBR_BITS)) + \
(((CPU_INT16U)(*(((CPU_INT08U *)(addr)) + 1))) << (0 * DEF_OCTET_NBR_BITS)))
#define MEM_VAL_GET_INT32U_BIG(addr) ((((CPU_INT32U)(*(((CPU_INT08U *)(addr)) + 0))) << (3 * DEF_OCTET_NBR_BITS)) + \
(((CPU_INT32U)(*(((CPU_INT08U *)(addr)) + 1))) << (2 * DEF_OCTET_NBR_BITS)) + \
(((CPU_INT32U)(*(((CPU_INT08U *)(addr)) + 2))) << (1 * DEF_OCTET_NBR_BITS)) + \
(((CPU_INT32U)(*(((CPU_INT08U *)(addr)) + 3))) << (0 * DEF_OCTET_NBR_BITS)))
#define MEM_VAL_GET_INT08U_LITTLE(addr) (((CPU_INT08U)(*(((CPU_INT08U *)(addr)) + 0))) << (0 * DEF_OCTET_NBR_BITS))
#define MEM_VAL_GET_INT16U_LITTLE(addr) ((((CPU_INT16U)(*(((CPU_INT08U *)(addr)) + 0))) << (0 * DEF_OCTET_NBR_BITS)) + \
(((CPU_INT16U)(*(((CPU_INT08U *)(addr)) + 1))) << (1 * DEF_OCTET_NBR_BITS)))
#define MEM_VAL_GET_INT32U_LITTLE(addr) ((((CPU_INT32U)(*(((CPU_INT08U *)(addr)) + 0))) << (0 * DEF_OCTET_NBR_BITS)) + \
(((CPU_INT32U)(*(((CPU_INT08U *)(addr)) + 1))) << (1 * DEF_OCTET_NBR_BITS)) + \
(((CPU_INT32U)(*(((CPU_INT08U *)(addr)) + 2))) << (2 * DEF_OCTET_NBR_BITS)) + \
(((CPU_INT32U)(*(((CPU_INT08U *)(addr)) + 3))) << (3 * DEF_OCTET_NBR_BITS)))
#if (CPU_CFG_ENDIAN_TYPE == CPU_ENDIAN_TYPE_BIG)
#define MEM_VAL_GET_INT08U(addr) MEM_VAL_GET_INT08U_BIG(addr)
#define MEM_VAL_GET_INT16U(addr) MEM_VAL_GET_INT16U_BIG(addr)
#define MEM_VAL_GET_INT32U(addr) MEM_VAL_GET_INT32U_BIG(addr)
#elif (CPU_CFG_ENDIAN_TYPE == CPU_ENDIAN_TYPE_LITTLE)
#define MEM_VAL_GET_INT08U(addr) MEM_VAL_GET_INT08U_LITTLE(addr)
#define MEM_VAL_GET_INT16U(addr) MEM_VAL_GET_INT16U_LITTLE(addr)
#define MEM_VAL_GET_INT32U(addr) MEM_VAL_GET_INT32U_LITTLE(addr)
#else /* See Note #5. */
#error "CPU_CFG_ENDIAN_TYPE illegally #defined in 'cpu.h' "
#error " [See 'cpu.h CONFIGURATION ERRORS']"
#endif
/*$PAGE*/
/*
*********************************************************************************************************
* MEM_VAL_SET_xxx()
*
* Description : Encode data values to any CPU memory address.
*
* Argument(s) : addr Lowest CPU memory address to encode data value (see Notes #2 & #3a).
*
* val Data value to encode (see Notes #1 & #3b).
*
* Return(s) : none.
*
* Caller(s) : various.
*
* Note(s) : (1) Encode data values into CPU memory based on the values' data-word order :
*
* MEM_VAL_SET_xxx_BIG() Encode big- endian data values -- data words' most
* significant octet @ lowest memory address
* MEM_VAL_SET_xxx_LITTLE() Encode little-endian data values -- data words' least
* significant octet @ lowest memory address
* MEM_VAL_SET_xxx() Encode data values using CPU's native or configured
* data-word order
*
* See also 'cpu.h CPU WORD CONFIGURATION Note #2'.
*
* (2) CPU memory addresses/pointers NOT checked for NULL.
*
* (3) (a) MEM_VAL_SET_xxx() macro's encode data values without regard to CPU word-aligned addresses.
* Thus for processors that require data word alignment, data words can be encoded to any
* CPU address, word-aligned or not, without generating data-word-alignment exceptions/faults.
*
* (b) However, 'val' data value to encode MUST start on an appropriate CPU word-aligned address.
*
* See also 'MEMORY DATA VALUE MACRO'S Note #1'.
*
* (4) MEM_VAL_COPY_SET_xxx() macro's are more efficient than MEM_VAL_SET_xxx() macro's & are
* also independent of CPU data-word-alignment & SHOULD be used whenever possible.
*
* See also 'MEM_VAL_COPY_SET_xxx() Note #4'.
*
* (5) The 'CPU_CFG_ENDIAN_TYPE' pre-processor 'else'-conditional code SHOULD never be compiled/
* linked since each 'cpu.h' SHOULD ensure that the CPU data-word-memory order configuration
* constant (CPU_CFG_ENDIAN_TYPE) is configured with an appropriate data-word-memory order
* value (see 'cpu.h CPU WORD CONFIGURATION Note #2'). The 'else'-conditional code is
* included as an extra precaution in case 'cpu.h' is incorrectly configured.
*********************************************************************************************************
*/
#define MEM_VAL_SET_INT08U_BIG(addr, val) { (*(((CPU_INT08U *)(addr)) + 0)) = ((CPU_INT08U)((((CPU_INT08U)(val)) & 0xFF) >> (0 * DEF_OCTET_NBR_BITS))); }
#define MEM_VAL_SET_INT16U_BIG(addr, val) { (*(((CPU_INT08U *)(addr)) + 0)) = ((CPU_INT08U)((((CPU_INT16U)(val)) & 0xFF00) >> (1 * DEF_OCTET_NBR_BITS))); \
(*(((CPU_INT08U *)(addr)) + 1)) = ((CPU_INT08U)((((CPU_INT16U)(val)) & 0x00FF) >> (0 * DEF_OCTET_NBR_BITS))); }
#define MEM_VAL_SET_INT32U_BIG(addr, val) { (*(((CPU_INT08U *)(addr)) + 0)) = ((CPU_INT08U)((((CPU_INT32U)(val)) & 0xFF000000) >> (3 * DEF_OCTET_NBR_BITS))); \
(*(((CPU_INT08U *)(addr)) + 1)) = ((CPU_INT08U)((((CPU_INT32U)(val)) & 0x00FF0000) >> (2 * DEF_OCTET_NBR_BITS))); \
(*(((CPU_INT08U *)(addr)) + 2)) = ((CPU_INT08U)((((CPU_INT32U)(val)) & 0x0000FF00) >> (1 * DEF_OCTET_NBR_BITS))); \
(*(((CPU_INT08U *)(addr)) + 3)) = ((CPU_INT08U)((((CPU_INT32U)(val)) & 0x000000FF) >> (0 * DEF_OCTET_NBR_BITS))); }
#define MEM_VAL_SET_INT08U_LITTLE(addr, val) { (*(((CPU_INT08U *)(addr)) + 0)) = ((CPU_INT08U)((((CPU_INT08U)(val)) & 0xFF) >> (0 * DEF_OCTET_NBR_BITS))); }
#define MEM_VAL_SET_INT16U_LITTLE(addr, val) { (*(((CPU_INT08U *)(addr)) + 0)) = ((CPU_INT08U)((((CPU_INT16U)(val)) & 0x00FF) >> (0 * DEF_OCTET_NBR_BITS))); \
(*(((CPU_INT08U *)(addr)) + 1)) = ((CPU_INT08U)((((CPU_INT16U)(val)) & 0xFF00) >> (1 * DEF_OCTET_NBR_BITS))); }
#define MEM_VAL_SET_INT32U_LITTLE(addr, val) { (*(((CPU_INT08U *)(addr)) + 0)) = ((CPU_INT08U)((((CPU_INT32U)(val)) & 0x000000FF) >> (0 * DEF_OCTET_NBR_BITS))); \
(*(((CPU_INT08U *)(addr)) + 1)) = ((CPU_INT08U)((((CPU_INT32U)(val)) & 0x0000FF00) >> (1 * DEF_OCTET_NBR_BITS))); \
(*(((CPU_INT08U *)(addr)) + 2)) = ((CPU_INT08U)((((CPU_INT32U)(val)) & 0x00FF0000) >> (2 * DEF_OCTET_NBR_BITS))); \
(*(((CPU_INT08U *)(addr)) + 3)) = ((CPU_INT08U)((((CPU_INT32U)(val)) & 0xFF000000) >> (3 * DEF_OCTET_NBR_BITS))); }
#if (CPU_CFG_ENDIAN_TYPE == CPU_ENDIAN_TYPE_BIG)
#define MEM_VAL_SET_INT08U(addr, val) MEM_VAL_SET_INT08U_BIG(addr, val)
#define MEM_VAL_SET_INT16U(addr, val) MEM_VAL_SET_INT16U_BIG(addr, val)
#define MEM_VAL_SET_INT32U(addr, val) MEM_VAL_SET_INT32U_BIG(addr, val)
#elif (CPU_CFG_ENDIAN_TYPE == CPU_ENDIAN_TYPE_LITTLE)
#define MEM_VAL_SET_INT08U(addr, val) MEM_VAL_SET_INT08U_LITTLE(addr, val)
#define MEM_VAL_SET_INT16U(addr, val) MEM_VAL_SET_INT16U_LITTLE(addr, val)
#define MEM_VAL_SET_INT32U(addr, val) MEM_VAL_SET_INT32U_LITTLE(addr, val)
#else /* See Note #5. */
#error "CPU_CFG_ENDIAN_TYPE illegally #defined in 'cpu.h' "
#error " [See 'cpu.h CONFIGURATION ERRORS']"
#endif
/*$PAGE*/
/*
*********************************************************************************************************
* MEM_VAL_COPY_GET_xxx()
*
* Description : Copy & decode data values from any CPU memory address to any CPU memory address.
*
* Argument(s) : addr_dest Lowest CPU memory address to copy/decode source address's data value
* (see Notes #2 & #3).
*
* addr_src Lowest CPU memory address of data value to copy/decode
* (see Notes #2 & #3).
*
* Return(s) : none.
*
* Caller(s) : various.
*
* Note(s) : (1) Copy/decode data values based on the values' data-word order :
*
* MEM_VAL_COPY_GET_xxx_BIG() Decode big- endian data values -- data words' most
* significant octet @ lowest memory address
* MEM_VAL_COPY_GET_xxx_LITTLE() Decode little-endian data values -- data words' least
* significant octet @ lowest memory address
* MEM_VAL_COPY_GET_xxx() Decode data values using CPU's native or configured
* data-word order
*
* See also 'cpu.h CPU WORD CONFIGURATION Note #2'.
*
* (2) CPU memory addresses/pointers NOT checked for NULL.
*
* (3) MEM_VAL_COPY_GET_xxx() macro's copy/decode data values without regard to CPU word-aligned
* addresses. Thus for processors that require data word alignment, data words can be copied/
* decoded to/from any CPU address, word-aligned or not, without generating data-word-alignment
* exceptions/faults.
*
* (4) MEM_VAL_COPY_GET_xxx() macro's are more efficient than MEM_VAL_GET_xxx() macro's & are
* also independent of CPU data-word-alignment & SHOULD be used whenever possible.
*
* See also 'MEM_VAL_GET_xxx() Note #4'.
*
* (5) Since octet-order copy/conversion are inverse operations, memory data value gets/sets are
* inverse operations.
*
* See also 'MEM_VAL_COPY_SET_xxx() Note #5'.
*
* (6) The 'CPU_CFG_ENDIAN_TYPE' pre-processor 'else'-conditional code SHOULD never be compiled/
* linked since each 'cpu.h' SHOULD ensure that the CPU data-word-memory order configuration
* constant (CPU_CFG_ENDIAN_TYPE) is configured with an appropriate data-word-memory order
* value (see 'cpu.h CPU WORD CONFIGURATION Note #2'). The 'else'-conditional code is
* included as an extra precaution in case 'cpu.h' is incorrectly configured.
*********************************************************************************************************
*/
/*$PAGE*/
#if (CPU_CFG_ENDIAN_TYPE == CPU_ENDIAN_TYPE_BIG)
#define MEM_VAL_COPY_GET_INT08U_BIG(addr_dest, addr_src) { (*(((CPU_INT08U *)(addr_dest)) + 0)) = (*(((CPU_INT08U *)(addr_src)) + 0)); }
#define MEM_VAL_COPY_GET_INT16U_BIG(addr_dest, addr_src) { (*(((CPU_INT08U *)(addr_dest)) + 0)) = (*(((CPU_INT08U *)(addr_src)) + 0)); \
(*(((CPU_INT08U *)(addr_dest)) + 1)) = (*(((CPU_INT08U *)(addr_src)) + 1)); }
#define MEM_VAL_COPY_GET_INT32U_BIG(addr_dest, addr_src) { (*(((CPU_INT08U *)(addr_dest)) + 0)) = (*(((CPU_INT08U *)(addr_src)) + 0)); \
(*(((CPU_INT08U *)(addr_dest)) + 1)) = (*(((CPU_INT08U *)(addr_src)) + 1)); \
(*(((CPU_INT08U *)(addr_dest)) + 2)) = (*(((CPU_INT08U *)(addr_src)) + 2)); \
(*(((CPU_INT08U *)(addr_dest)) + 3)) = (*(((CPU_INT08U *)(addr_src)) + 3)); }
#define MEM_VAL_COPY_GET_INT08U_LITTLE(addr_dest, addr_src) { (*(((CPU_INT08U *)(addr_dest)) + 0)) = (*(((CPU_INT08U *)(addr_src)) + 0)); }
#define MEM_VAL_COPY_GET_INT16U_LITTLE(addr_dest, addr_src) { (*(((CPU_INT08U *)(addr_dest)) + 0)) = (*(((CPU_INT08U *)(addr_src)) + 1)); \
(*(((CPU_INT08U *)(addr_dest)) + 1)) = (*(((CPU_INT08U *)(addr_src)) + 0)); }
#define MEM_VAL_COPY_GET_INT32U_LITTLE(addr_dest, addr_src) { (*(((CPU_INT08U *)(addr_dest)) + 0)) = (*(((CPU_INT08U *)(addr_src)) + 3)); \
(*(((CPU_INT08U *)(addr_dest)) + 1)) = (*(((CPU_INT08U *)(addr_src)) + 2)); \
(*(((CPU_INT08U *)(addr_dest)) + 2)) = (*(((CPU_INT08U *)(addr_src)) + 1)); \
(*(((CPU_INT08U *)(addr_dest)) + 3)) = (*(((CPU_INT08U *)(addr_src)) + 0)); }
#define MEM_VAL_COPY_GET_INT08U(addr_dest, addr_src) MEM_VAL_COPY_GET_INT08U_BIG(addr_dest, addr_src)
#define MEM_VAL_COPY_GET_INT16U(addr_dest, addr_src) MEM_VAL_COPY_GET_INT16U_BIG(addr_dest, addr_src)
#define MEM_VAL_COPY_GET_INT32U(addr_dest, addr_src) MEM_VAL_COPY_GET_INT32U_BIG(addr_dest, addr_src)
#elif (CPU_CFG_ENDIAN_TYPE == CPU_ENDIAN_TYPE_LITTLE)
#define MEM_VAL_COPY_GET_INT08U_BIG(addr_dest, addr_src) { (*(((CPU_INT08U *)(addr_dest)) + 0)) = (*(((CPU_INT08U *)(addr_src)) + 0)); }
#define MEM_VAL_COPY_GET_INT16U_BIG(addr_dest, addr_src) { (*(((CPU_INT08U *)(addr_dest)) + 0)) = (*(((CPU_INT08U *)(addr_src)) + 1)); \
(*(((CPU_INT08U *)(addr_dest)) + 1)) = (*(((CPU_INT08U *)(addr_src)) + 0)); }
#define MEM_VAL_COPY_GET_INT32U_BIG(addr_dest, addr_src) { (*(((CPU_INT08U *)(addr_dest)) + 0)) = (*(((CPU_INT08U *)(addr_src)) + 3)); \
(*(((CPU_INT08U *)(addr_dest)) + 1)) = (*(((CPU_INT08U *)(addr_src)) + 2)); \
(*(((CPU_INT08U *)(addr_dest)) + 2)) = (*(((CPU_INT08U *)(addr_src)) + 1)); \
(*(((CPU_INT08U *)(addr_dest)) + 3)) = (*(((CPU_INT08U *)(addr_src)) + 0)); }
#define MEM_VAL_COPY_GET_INT08U_LITTLE(addr_dest, addr_src) { (*(((CPU_INT08U *)(addr_dest)) + 0)) = (*(((CPU_INT08U *)(addr_src)) + 0)); }
#define MEM_VAL_COPY_GET_INT16U_LITTLE(addr_dest, addr_src) { (*(((CPU_INT08U *)(addr_dest)) + 0)) = (*(((CPU_INT08U *)(addr_src)) + 0)); \
(*(((CPU_INT08U *)(addr_dest)) + 1)) = (*(((CPU_INT08U *)(addr_src)) + 1)); }
#define MEM_VAL_COPY_GET_INT32U_LITTLE(addr_dest, addr_src) { (*(((CPU_INT08U *)(addr_dest)) + 0)) = (*(((CPU_INT08U *)(addr_src)) + 0)); \
(*(((CPU_INT08U *)(addr_dest)) + 1)) = (*(((CPU_INT08U *)(addr_src)) + 1)); \
(*(((CPU_INT08U *)(addr_dest)) + 2)) = (*(((CPU_INT08U *)(addr_src)) + 2)); \
(*(((CPU_INT08U *)(addr_dest)) + 3)) = (*(((CPU_INT08U *)(addr_src)) + 3)); }
#define MEM_VAL_COPY_GET_INT08U(addr_dest, addr_src) MEM_VAL_COPY_GET_INT08U_LITTLE(addr_dest, addr_src)
#define MEM_VAL_COPY_GET_INT16U(addr_dest, addr_src) MEM_VAL_COPY_GET_INT16U_LITTLE(addr_dest, addr_src)
#define MEM_VAL_COPY_GET_INT32U(addr_dest, addr_src) MEM_VAL_COPY_GET_INT32U_LITTLE(addr_dest, addr_src)
#else /* See Note #6. */
#error "CPU_CFG_ENDIAN_TYPE illegally #defined in 'cpu.h' "
#error " [See 'cpu.h CONFIGURATION ERRORS']"
#endif
/*$PAGE*/
/*
*********************************************************************************************************
* MEM_VAL_COPY_SET_xxx()
*
* Description : Copy & encode data values from any CPU memory address to any CPU memory address.
*
* Argument(s) : addr_dest Lowest CPU memory address to copy/encode source address's data value
* (see Notes #2 & #3).
*
* addr_src Lowest CPU memory address of data value to copy/encode
* (see Notes #2 & #3).
*
* Return(s) : none.
*
* Caller(s) : various.
*
* Note(s) : (1) Copy/encode data values based on the values' data-word order :
*
* MEM_VAL_COPY_SET_xxx_BIG() Encode big- endian data values -- data words' most
* significant octet @ lowest memory address
* MEM_VAL_COPY_SET_xxx_LITTLE() Encode little-endian data values -- data words' least
* significant octet @ lowest memory address
* MEM_VAL_COPY_SET_xxx() Encode data values using CPU's native or configured
* data-word order
*
* See also 'cpu.h CPU WORD CONFIGURATION Note #2'.
*
* (2) CPU memory addresses/pointers NOT checked for NULL.
*
* (3) MEM_VAL_COPY_SET_xxx() macro's copy/encode data values without regard to CPU word-aligned
* addresses. Thus for processors that require data word alignment, data words can be copied/
* encoded to/from any CPU address, word-aligned or not, without generating data-word-alignment
* exceptions/faults.
*
* (4) MEM_VAL_COPY_SET_xxx() macro's are more efficient than MEM_VAL_SET_xxx() macro's & are
* also independent of CPU data-word-alignment & SHOULD be used whenever possible.
*
* See also 'MEM_VAL_SET_xxx() Note #4'.
*
* (5) Since octet-order copy/conversion are inverse operations, memory data value gets/sets
* are inverse operations.
*
* See also 'MEM_VAL_COPY_GET_xxx() Note #5'.
*********************************************************************************************************
*/
/* See Note #5. */
#define MEM_VAL_COPY_SET_INT08U_BIG(addr_dest, addr_src) MEM_VAL_COPY_GET_INT08U_BIG(addr_dest, addr_src)
#define MEM_VAL_COPY_SET_INT16U_BIG(addr_dest, addr_src) MEM_VAL_COPY_GET_INT16U_BIG(addr_dest, addr_src)
#define MEM_VAL_COPY_SET_INT32U_BIG(addr_dest, addr_src) MEM_VAL_COPY_GET_INT32U_BIG(addr_dest, addr_src)
#define MEM_VAL_COPY_SET_INT08U_LITTLE(addr_dest, addr_src) MEM_VAL_COPY_GET_INT08U_LITTLE(addr_dest, addr_src)
#define MEM_VAL_COPY_SET_INT16U_LITTLE(addr_dest, addr_src) MEM_VAL_COPY_GET_INT16U_LITTLE(addr_dest, addr_src)
#define MEM_VAL_COPY_SET_INT32U_LITTLE(addr_dest, addr_src) MEM_VAL_COPY_GET_INT32U_LITTLE(addr_dest, addr_src)
#define MEM_VAL_COPY_SET_INT08U(addr_dest, addr_src) MEM_VAL_COPY_GET_INT08U(addr_dest, addr_src)
#define MEM_VAL_COPY_SET_INT16U(addr_dest, addr_src) MEM_VAL_COPY_GET_INT16U(addr_dest, addr_src)
#define MEM_VAL_COPY_SET_INT32U(addr_dest, addr_src) MEM_VAL_COPY_GET_INT32U(addr_dest, addr_src)
/*$PAGE*/
/*
*********************************************************************************************************
* MEM_VAL_COPY_xxx()
*
* Description : Copy data values from any CPU memory address to any CPU memory address.
*
* Argument(s) : addr_dest Lowest CPU memory address to copy source address's data value
* (see Notes #2 & #3).
*
* addr_src Lowest CPU memory address of data value to copy
* (see Notes #2 & #3).
*
* Return(s) : none.
*
* Caller(s) : various.
*
* Note(s) : (1) MEM_VAL_COPY_xxx() macro's copy data values based on CPU's native data-word order.
*
* See also 'cpu.h CPU WORD CONFIGURATION Note #2'.
*
* (2) CPU memory addresses/pointers NOT checked for NULL.
*
* (3) MEM_VAL_COPY_xxx() macro's copy data values without regard to CPU word-aligned addresses.
* Thus for processors that require data word alignment, data words can be copied to/from any
* CPU address, word-aligned or not, without generating data-word-alignment exceptions/faults.
*********************************************************************************************************
*/
#define MEM_VAL_COPY_08(addr_dest, addr_src) { (*(((CPU_INT08U *)(addr_dest)) + 0)) = (*(((CPU_INT08U *)(addr_src)) + 0)); }
#define MEM_VAL_COPY_16(addr_dest, addr_src) { (*(((CPU_INT08U *)(addr_dest)) + 0)) = (*(((CPU_INT08U *)(addr_src)) + 0)); \
(*(((CPU_INT08U *)(addr_dest)) + 1)) = (*(((CPU_INT08U *)(addr_src)) + 1)); }
#define MEM_VAL_COPY_32(addr_dest, addr_src) { (*(((CPU_INT08U *)(addr_dest)) + 0)) = (*(((CPU_INT08U *)(addr_src)) + 0)); \
(*(((CPU_INT08U *)(addr_dest)) + 1)) = (*(((CPU_INT08U *)(addr_src)) + 1)); \
(*(((CPU_INT08U *)(addr_dest)) + 2)) = (*(((CPU_INT08U *)(addr_src)) + 2)); \
(*(((CPU_INT08U *)(addr_dest)) + 3)) = (*(((CPU_INT08U *)(addr_src)) + 3)); }
/*$PAGE*/
/*
*********************************************************************************************************
* FUNCTION PROTOTYPES
*********************************************************************************************************
*/
void Mem_Clr (void *pmem,
CPU_SIZE_T size);
void Mem_Set (void *pmem,
CPU_INT08U data_val,
CPU_SIZE_T size);
void Mem_Copy(void *pdest,
void *psrc,
CPU_SIZE_T size);
CPU_BOOLEAN Mem_Cmp (void *p1_mem,
void *p2_mem,
CPU_SIZE_T size);
/*$PAGE*/
/*
*********************************************************************************************************
* CONFIGURATION ERRORS
*********************************************************************************************************
*/
/*
*********************************************************************************************************
* MODULE END
*********************************************************************************************************
*/
#endif /* End of lib mem module include. */