#include "rfid-spi.h" uid_struct uid; // Used by picc_read_card_serial(). uid_struct * get_uid() { return &uid; } /** * Writes a number of bytes to the specified register in the MFRC522 chip. * The interface is described in the datasheet section 8.1.2. */ void write_bytes_mfrc522( pcd_register reg, uint8_t count, uint8_t *values) { spi_getSem(); spi_selectChip(MFRC522_SPI); SpiExchange(MFRC522_SPI, (reg << 1) & 0x7e); uint8_t index; for (index = 0; index < count; index++) { SpiExchange(MFRC522_SPI, values[index]); } spi_unselectChip(MFRC522_SPI); spi_freeSem(); } // End PCD_WriteRegister() /** * Writes a byte to the specified register in the MFRC522 chip. * The interface is described in the datasheet section 8.1.2. */ void write_mfrc522(uint8_t adr, uint8_t val) { spi_getSem(); spi_selectChip(MFRC522_SPI); SpiExchange(MFRC522_SPI, (adr << 1) & 0x7e); SpiExchange(MFRC522_SPI, val); spi_unselectChip(MFRC522_SPI); spi_freeSem(); } /** * Reads a byte from the specified register in the MFRC522 chip. * The interface is described in the datasheet section 8.1.2. */ uint8_t read_mfrc522(uint8_t dev_cmd) { uint8_t ret = 0x0; spi_getSem(); spi_selectChip(MFRC522_SPI); SpiExchange(MFRC522_SPI, ((dev_cmd << 1) & 0x7e) | 0x80); ret = SpiExchange(MFRC522_SPI, 0x00); spi_unselectChip(MFRC522_SPI); spi_freeSem(); return ret; } /** * Reads a number of bytes from the specified register in the MFRC522 chip. * The interface is described in the datasheet section 8.1.2. */ void read_fifo_mfrc522( pcd_register reg, uint8_t count, uint8_t *values, uint8_t rx_align) { if (count == 0) { return; } //Serial.print(F("Reading ")); Serial.print(count); Serial.println(F(" bytes from register.")); uint8_t index = 0; // Index in values array. uint8_t ret = 0; uint8_t address = ((reg << 1) & 0x7e) | 0x80; spi_getSem(); spi_selectChip(MFRC522_SPI); count--; // One read is performed outside of the loop SpiExchange(MFRC522_SPI, address); if (rx_align) { // Only update bit positions rx_align..7 in values[0] // Create bit mask for bit positions rx_align..7 uint8_t mask = (0xFF << rx_align) & 0xFF; // Read value and tell that we want to read the same address again. uint8_t value; ret = SpiExchange(MFRC522_SPI, address); value=ret; // Apply mask to both current value of values[0] and the new data in value. values[0] = (values[0] & ~mask) | (value & mask); index++; } while (index < count) { ret = SpiExchange(MFRC522_SPI, address); values[index] = ret; // Read value and tell that we want to read the same address again. index++; } ret = SpiExchange(MFRC522_SPI, 0); values[index] = ret; // Read value and tell that we want to read the same address again. spi_unselectChip(MFRC522_SPI); // Release slave again spi_freeSem(); } // End PCD_ReadRegister() /** * Translates the SAK (Select Acknowledge) to a PICC type. * * @return PICC_Type */ picc_type picc_get_type(uint8_t sak) { // http://www.nxp.com/documents/application_note/AN10833.pdf // 3.2 Coding of Select Acknowledge (SAK) // ignore 8-bit (iso14443 starts with LSBit = bit 1) // fixes wrong type for manufacturer Infineon (http://nfc-tools.org/index.php?title=ISO14443A) sak &= 0x7F; switch (sak) { case 0x04: return PICC_TYPE_NOT_COMPLETE; // uid_struct not complete case 0x09: return PICC_TYPE_MIFARE_MINI; case 0x08: return PICC_TYPE_MIFARE_1K; case 0x18: return PICC_TYPE_MIFARE_4K; case 0x00: return PICC_TYPE_MIFARE_UL; case 0x10: case 0x11: return PICC_TYPE_MIFARE_PLUS; case 0x01: return PICC_TYPE_TNP3XXX; case 0x20: return PICC_TYPE_ISO_14443_4; case 0x40: return PICC_TYPE_ISO_18092; default: return PICC_TYPE_UNKNOWN; } } // End picc_get_type() /** * Sets the bits given in mask in register reg. */ void pcd_set_register_bit_mask(pcd_register reg, uint8_t mask) { uint8_t tmp; tmp = read_mfrc522(reg); write_mfrc522(reg, tmp | mask); // set bit mask } // End pcd_set_register_bit_mask() /** * Use the CRC coprocessor in the MFRC522 to calculate a CRC_A. * * @return STATUS_OK on success, STATUS_??? otherwise. */ status_code pcd_calculate_crc(uint8_t *data, uint8_t length, uint8_t *result) { write_mfrc522(CommandReg, PCD_Idle); // Stop any active command. write_mfrc522(DivIrqReg, 0x04); // Clear the CRCIRq interrupt request bit write_mfrc522(FIFOLevelReg, 0x80); // FlushBuffer = 1, FIFO initialization write_bytes_mfrc522(FIFODataReg, length, data); // Write data to the FIFO write_mfrc522(CommandReg, PCD_CalcCRC); // Start the calculation // Wait for the CRC calculation to complete. Each iteration of the while-loop takes 17.73μs. // TODO check/modify for other architectures than Arduino Uno 16bit // Wait for the CRC calculation to complete. Each iteration of the while-loop takes 17.73us. uint16_t i; for ( i = 89; i > 0; i--) { // DivIrqReg[7..0] bits are: Set2 reserved reserved MfinActIRq reserved CRCIRq reserved reserved uint8_t n = read_mfrc522(DivIrqReg); if (n & 0x04) { // CRCIRq bit set - calculation done write_mfrc522(CommandReg, PCD_Idle); // Stop calculating CRC for new content in the FIFO. // Transfer the result from the registers to the result buffer result[0] = read_mfrc522(CRCResultRegL); result[1] = read_mfrc522(CRCResultRegH); return STATUS_OK; } OSTimeDly(1); } // 89ms passed and nothing happend. Communication with the MFRC522 might be down. //printf("89ms passed and nothing happend.\n"); return STATUS_TIMEOUT; } // End pcd_calculate_crc() /** * Performs a soft reset on the MFRC522 chip and waits for it to be ready again. */ void pcd_reset() { write_mfrc522(CommandReg, PCD_SoftReset); // Issue the SoftReset command. // The datasheet does not mention how long the SoftRest command takes to complete. // But the MFRC522 might have been in soft power-down mode (triggered by bit 4 of CommandReg) // Section 8.8.2 in the datasheet says the oscillator start-up time is the start up time of the crystal + 37,74μs. Let us be generous: 50ms. //BUSYWAIT_UNTIL_ABS(RTIMER_NOW(), US_TO_RTIMERTICKS(1000)); // Wait for the PowerDown bit in CommandReg to be cleared uint8_t count = 0; do { // Wait for the PowerDown bit in CommandReg to be cleared (max 3x50ms) us_delay_spi(50000); } while ((read_mfrc522(CommandReg) & (1 << 4)) && (++count) < 3); } // End pcd_reset() /** * Transfers data to the MFRC522 FIFO, executes a command, waits for completion and transfers data back from the FIFO. * CRC validation can only be done if back_data and back_len are specified. * * @return STATUS_OK on success, STATUS_??? otherwise. */ status_code pcd_communicate_tith_picc(uint8_t command, uint8_t wait_irq, uint8_t *send_data, uint8_t send_len, uint8_t *back_data, uint8_t *back_len, uint8_t *valid_bits, uint8_t rx_align, bool check_crc) { // Prepare values for BitFramingReg uint8_t txLastBits = valid_bits ? *valid_bits : 0; uint8_t bitFraming = (rx_align << 4) + txLastBits; // rx_align = BitFramingReg[6..4]. TxLastBits = BitFramingReg[2..0] write_mfrc522(CommandReg, PCD_Idle); // Stop any active command. write_mfrc522(ComIrqReg, 0x7F); // Clear all seven interrupt request bits write_mfrc522(FIFOLevelReg, 0x80); // FlushBuffer = 1, FIFO initialization write_bytes_mfrc522(FIFODataReg, send_len, send_data); // Write send_data to the FIFO write_mfrc522(BitFramingReg, bitFraming); // Bit adjustments write_mfrc522(CommandReg, command); // Execute the command if (command == PCD_Transceive) { pcd_set_register_bit_mask(BitFramingReg, 0x80); // StartSend=1, transmission of data starts } // Wait for the command to complete. // In pcd_initialization() we set the TAuto flag in TModeReg. This means the timer automatically starts when the PCD stops transmitting. // Each iteration of the do-while-loop takes 17.86μs. // TODO check/modify for other architectures than Arduino Uno 16bit uint16_t i; for (i = 36; i > 0; i--) { uint8_t n = read_mfrc522(ComIrqReg); // ComIrqReg[7..0] bits are: Set1 TxIRq RxIRq IdleIRq HiAlertIRq LoAlertIRq ErrIRq TimerIRq if (n & wait_irq) { // One of the that signal success has been set. break; } if (n & 0x01) { // Timer interrupt - nothing received in 25ms return STATUS_TIMEOUT; } OSTimeDly(1); } // 35.7ms and nothing happend. Communication with the MFRC522 might be down. if (i == 0) { return STATUS_TIMEOUT; } // Stop now if any errors except collisions were detected. uint8_t errorRegValue = read_mfrc522(ErrorReg); // ErrorReg[7..0] bits are: WrErr TempErr reserved BufferOvfl CollErr CRCErr ParityErr ProtocolErr if (errorRegValue & 0x13) { // BufferOvfl ParityErr ProtocolErr return STATUS_ERROR; } uint8_t _valid_bits = 0; // If the caller wants data back, get it from the MFRC522. if (back_data && back_len) { uint8_t n = read_mfrc522(FIFOLevelReg); // Number of bytes in the FIFO if (n > *back_len) { return STATUS_NO_ROOM; } *back_len = n; // Number of bytes returned read_fifo_mfrc522(FIFODataReg, n, back_data, rx_align); // Get received data from FIFO _valid_bits = read_mfrc522(ControlReg) & 0x07; // RxLastBits[2:0] indicates the number of valid bits in the last received byte. If this value is 000b, the whole byte is valid. if (valid_bits) { *valid_bits = _valid_bits; //printf(" *valid_bits = %x _valid_bits = %x\n",*valid_bits, _valid_bits); } } // Tell about collisions if (errorRegValue & 0x08) { // CollErr return STATUS_COLLISION; } // Perform CRC_A validation if requested. if (back_data && back_len && check_crc) { // In this case a MIFARE Classic NAK is not OK. if (*back_len == 1 && _valid_bits == 4) { return STATUS_MIFARE_NACK; } // We need at least the CRC_A value and all 8 bits of the last byte must be received. if (*back_len < 2 || _valid_bits != 0) { return STATUS_CRC_WRONG; } // Verify CRC_A - do our own calculation and store the control in controlBuffer. uint8_t controlBuffer[2]; status_code status = pcd_calculate_crc(&back_data[0], *back_len - 2, &controlBuffer[0]); if (status != STATUS_OK) { return status; } if ((back_data[*back_len - 2] != controlBuffer[0]) || (back_data[*back_len - 1] != controlBuffer[1])) { return STATUS_CRC_WRONG; } } return STATUS_OK; } // End pcd_communicate_tith_picc() ///////////////////////////////////////////////////////////////////////////////////// // Functions for communicating with PICCs ///////////////////////////////////////////////////////////////////////////////////// /** * Executes the Transceive command. * CRC validation can only be done if back_data and back_len are specified. * * @return STATUS_OK on success, STATUS_??? otherwise. */ status_code pcd_transceive_data(uint8_t *send_data, uint8_t send_len, uint8_t *back_data, uint8_t *back_len, uint8_t *valid_bits, uint8_t rx_align, bool check_crc) { uint8_t wait_irq = 0x30; // RxIRq and IdleIRq status_code result = (status_code)pcd_communicate_tith_picc(PCD_Transceive, wait_irq, send_data, send_len, back_data, back_len, valid_bits, rx_align, check_crc); return result; } // End pcd_transceive_data() /** * Reads 16 bytes (+ 2 bytes CRC_A) from the active PICC. * * For MIFARE Classic the sector containing the block must be authenticated before calling this function. * * For MIFARE Ultralight only addresses 00h to 0Fh are decoded. * The MF0ICU1 returns a NAK for higher addresses. * The MF0ICU1 responds to the READ command by sending 16 bytes starting from the page address defined by the command argument. * For example; if blockAddr is 03h then pages 03h, 04h, 05h, 06h are returned. * A roll-back is implemented: If blockAddr is 0Eh, then the contents of pages 0Eh, 0Fh, 00h and 01h are returned. * * The buffer must be at least 18 bytes because a CRC_A is also returned. * Checks the CRC_A before returning STATUS_OK. * * @return STATUS_OK on success, STATUS_??? otherwise. */ status_code mifare_read( uint8_t blockAddr,uint8_t *buffer,uint8_t *bufferSize) { status_code result; // Sanity check if (buffer == NULL || *bufferSize < 18) { return STATUS_NO_ROOM; } // Build command buffer buffer[0] = PICC_CMD_MF_READ; buffer[1] = blockAddr; // Calculate CRC_A result = pcd_calculate_crc(buffer, 2, &buffer[2]); if (result != STATUS_OK) { return result; } // Transmit the buffer and receive the response, validate CRC_A. return pcd_transceive_data(buffer, 4, buffer, bufferSize, NULL, 0, true); } // End mifare_read() /** * Wrapper for MIFARE protocol communication. * Adds CRC_A, executes the Transceive command and checks that the response is MF_ACK or a timeout. * * @return STATUS_OK on success, STATUS_??? otherwise. */ status_code pcd_mifare_transceive( uint8_t *sendData, ///< Pointer to the data to transfer to the FIFO. Do NOT include the CRC_A. uint8_t sendLen, ///< Number of bytes in sendData. bool acceptTimeout ///< True => A timeout is also success ) { status_code result; uint8_t cmdBuffer[18]; // We need room for 16 bytes data and 2 bytes CRC_A. // Sanity check if (sendData == NULL || sendLen > 16) { return STATUS_INVALID; } // Copy sendData[] to cmdBuffer[] and add CRC_A memcpy(cmdBuffer, sendData, sendLen); result = pcd_calculate_crc(cmdBuffer, sendLen, &cmdBuffer[sendLen]); if (result != STATUS_OK) { return result; } sendLen += 2; // Transceive the data, store the reply in cmdBuffer[] uint8_t waitIRq = 0x30; // RxIRq and IdleIRq uint8_t cmdBufferSize = sizeof(cmdBuffer); uint8_t validBits = 0; result = pcd_communicate_tith_picc(PCD_Transceive, waitIRq, cmdBuffer, sendLen, cmdBuffer, &cmdBufferSize, &validBits, 0, false); if (acceptTimeout && result == STATUS_TIMEOUT) { return STATUS_OK; } if (result != STATUS_OK) { return result; } // The PICC must reply with a 4 bit ACK if (cmdBufferSize != 1 || validBits != 4) { return STATUS_ERROR; } if (cmdBuffer[0] != MF_ACK) { return STATUS_MIFARE_NACK; } return STATUS_OK; } /** * Writes 16 bytes to the active PICC. * * For MIFARE Classic the sector containing the block must be authenticated before calling this function. * * For MIFARE Ultralight the operation is called "COMPATIBILITY WRITE". * Even though 16 bytes are transferred to the Ultralight PICC, only the least significant 4 bytes (bytes 0 to 3) * are written to the specified address. It is recommended to set the remaining bytes 04h to 0Fh to all logic 0. * * * @return STATUS_OK on success, STATUS_??? otherwise. */ status_code mifare_write(uint8_t blockAddr, ///< MIFARE Classic: The block (0-0xff) number. MIFARE Ultralight: The page (2-15) to write to. uint8_t *buffer, ///< The 16 bytes to write to the PICC uint8_t bufferSize ///< Buffer size, must be at least 16 bytes. Exactly 16 bytes are written. ) { status_code result; // Sanity check if (buffer == NULL|| bufferSize < 16) { return STATUS_NO_ROOM; } // Mifare Classic protocol requires two communications to perform a write. // Step 1: Tell the PICC we want to write to block blockAddr. uint8_t cmdBuffer[2]; cmdBuffer[0] = PICC_CMD_MF_WRITE; cmdBuffer[1] = blockAddr; result = pcd_mifare_transceive(cmdBuffer, 2, false); // Adds CRC_A and checks that the response is MF_ACK. if (result != STATUS_OK) { return result; } // Step 2: Transfer the data result = pcd_mifare_transceive(buffer, bufferSize, false); // Adds CRC_A and checks that the response is MF_ACK. if (result != STATUS_OK) { return result; } return STATUS_OK; } // End MIFARE_Write() /** * Clears the bits given in mask from register reg. */ void pcd_clear_register_bit_mask(pcd_register reg, uint8_t mask) { uint8_t tmp; tmp = read_mfrc522(reg); write_mfrc522(reg, tmp & (~mask)); // clear bit mask } // End pcd_clear_register_bit_mask() /** * Used to exit the PCD from its authenticated state. * Remember to call this function after communicating with an authenticated PICC - otherwise no new communications can start. */ void pcd_stop_cryptol() { // Clear MFCrypto1On bit pcd_clear_register_bit_mask(Status2Reg, 0x08); // Status2Reg[7..0] bits are: TempSensClear I2CForceHS reserved reserved MFCrypto1On ModemState[2:0] } // End pcd_stop_cryptol() status_code picc_select( uid_struct *uid, uint8_t valid_bits) { bool uidComplete; bool selectDone; bool use_cascade_tag; uint8_t cascadeLevel = 1; uint8_t count; uint8_t index; uint8_t uid_index; // The first index in uid->uidByte[] that is used in the current Cascade Level. int8_t current_level_known_bits; // The number of known uid_struct bits in the current Cascade Level. uint8_t buffer[9]; // The SELECT/ANTICOLLISION commands uses a 7 byte standard frame + 2 bytes CRC_A uint8_t bufferUsed; // The number of bytes used in the buffer, ie the number of bytes to transfer to the FIFO. uint8_t rx_align; // Used in BitFramingReg. Defines the bit position for the first bit received. uint8_t txLastBits; // Used in BitFramingReg. The number of valid bits in the last transmitted byte. uint8_t *responseBuffer; uint8_t responseLength; status_code result; // Description of buffer structure: // Byte 0: SEL Indicates the Cascade Level: PICC_CMD_SEL_CL1, PICC_CMD_SEL_CL2 or PICC_CMD_SEL_CL3 // Byte 1: NVB Number of Valid Bits (in complete command, not just the UID): High nibble: complete bytes, Low nibble: Extra bits. // Byte 2: UID-data or CT See explanation below. CT means Cascade Tag. // Byte 3: UID-data // Byte 4: UID-data // Byte 5: UID-data // Byte 6: BCC Block Check Character - XOR of bytes 2-5 // Byte 7: CRC_A // Byte 8: CRC_A // The BCC and CRC_A are only transmitted if we know all the uid_struct bits of the current Cascade Level. // // Description of bytes 2-5: (Section 6.5.4 of the ISO/IEC 14443-3 draft: uid_struct contents and cascade levels) // uid_struct size Cascade level Byte2 Byte3 Byte4 Byte5 // ======== ============= ===== ===== ===== ===== // 4 bytes 1 uid0 uid1 uid2 uid3 // 7 bytes 1 CT uid0 uid1 uid2 // 2 uid3 uid4 uid5 uid6 // 10 bytes 1 CT uid0 uid1 uid2 // 2 CT uid3 uid4 uid5 // 3 uid6 uid7 uid8 uid9 // Sanity checks if (valid_bits > 80) { return STATUS_INVALID; } // Prepare MFRC522 pcd_clear_register_bit_mask(CollReg, 0x80); // ValuesAfterColl=1 => Bits received after collision are cleared. // Repeat Cascade Level loop until we have a complete UID. uidComplete = false; while (!uidComplete) { // Set the Cascade Level in the SEL byte, find out if we need to use the Cascade Tag in byte 2. switch (cascadeLevel) { case 1: buffer[0] = PICC_CMD_SEL_CL1; uid_index = 0; use_cascade_tag = valid_bits && uid->size > 4; // When we know that the uid_struct has more than 4 bytes break; case 2: buffer[0] = PICC_CMD_SEL_CL2; uid_index = 3; use_cascade_tag = valid_bits && uid->size > 7; // When we know that the uid_struct has more than 7 bytes break; case 3: buffer[0] = PICC_CMD_SEL_CL3; uid_index = 6; use_cascade_tag = false; // Never used in CL3. break; default: //printf("INTERNAL ERROR"); return STATUS_INTERNAL_ERROR; break; } // How many uid_struct bits are known in this Cascade Level? current_level_known_bits = valid_bits - (8 * uid_index); if (current_level_known_bits < 0) { current_level_known_bits = 0; } // Copy the known bits from uid->uidByte[] to buffer[] index = 2; // destination index in buffer[] if (use_cascade_tag) { buffer[index++] = PICC_CMD_CT; } uint8_t bytes_to_copy = current_level_known_bits / 8 + (current_level_known_bits % 8 ? 1 : 0); // The number of bytes needed to represent the known bits for this level. if (bytes_to_copy) { uint8_t maxBytes = use_cascade_tag ? 3 : 4; // Max 4 bytes in each Cascade Level. Only 3 left if we use the Cascade Tag if (bytes_to_copy > maxBytes) { bytes_to_copy = maxBytes; } for (count = 0; count < bytes_to_copy; count++) { buffer[index++] = uid->uidByte[uid_index + count]; } } // Now that the data has been copied we need to include the 8 bits in CT in current_level_known_bits if (use_cascade_tag) { current_level_known_bits += 8; } // Repeat anti collision loop until we can transmit all uid_struct bits + BCC and receive a SAK - max 32 iterations. selectDone = false; while (!selectDone) { // Find out how many bits and bytes to send and receive. if (current_level_known_bits >= 32) { // All uid_struct bits in this Cascade Level are known. This is a SELECT. buffer[1] = 0x70; // NVB - Number of Valid Bits: Seven whole bytes // Calculate BCC - Block Check Character buffer[6] = buffer[2] ^ buffer[3] ^ buffer[4] ^ buffer[5]; // Calculate CRC_A result = pcd_calculate_crc(buffer, 7, &buffer[7]); if (result != STATUS_OK) { return result; } txLastBits = 0; // 0 => All 8 bits are valid. bufferUsed = 9; // Store response in the last 3 bytes of buffer (BCC and CRC_A - not needed after tx) responseBuffer = &buffer[6]; responseLength = 3; } else { // This is an ANTICOLLISION. txLastBits = current_level_known_bits % 8; count = current_level_known_bits / 8; // Number of whole bytes in the uid_struct part. index = 2 + count; // Number of whole bytes: SEL + NVB + UIDs buffer[1] = (index << 4) + txLastBits; // NVB - Number of Valid Bits bufferUsed = index + (txLastBits ? 1 : 0); // Store response in the unused part of buffer responseBuffer = &buffer[index]; responseLength = sizeof(buffer) - index; } // Set bit adjustments rx_align = txLastBits; // Having a separate variable is overkill. But it makes the next line easier to read. write_mfrc522(BitFramingReg, (rx_align << 4) + txLastBits); // rx_align = BitFramingReg[6..4]. TxLastBits = BitFramingReg[2..0] // Transmit the buffer and receive the response. result = pcd_transceive_data(buffer, bufferUsed, responseBuffer, &responseLength, &txLastBits, rx_align, false); if (result == STATUS_COLLISION) { // More than one PICC in the field => collision. uint8_t valueOfCollReg = read_mfrc522(CollReg); // CollReg[7..0] bits are: ValuesAfterColl reserved CollPosNotValid CollPos[4:0] if (valueOfCollReg & 0x20) { // CollPosNotValid return STATUS_COLLISION; // Without a valid collision position we cannot continue } uint8_t collisionPos = valueOfCollReg & 0x1F; // Values 0-31, 0 means bit 32. if (collisionPos == 0) { collisionPos = 32; } if (collisionPos <= current_level_known_bits) { // No progress - should not happen return STATUS_INTERNAL_ERROR; } // Choose the PICC with the bit set. current_level_known_bits = collisionPos; count = (current_level_known_bits - 1) % 8; // The bit to modify index = 1 + (current_level_known_bits / 8) + (count ? 1 : 0); // First byte is index 0. buffer[index] |= (1 << count); } else if (result != STATUS_OK) { return result; } else { // STATUS_OK if (current_level_known_bits >= 32) { // This was a SELECT. selectDone = true; // No more anticollision // We continue below outside the while. } else { // This was an ANTICOLLISION. // We now have all 32 bits of the uid_struct in this Cascade Level current_level_known_bits = 32; // Run loop again to do the SELECT. } } } // End of while (!selectDone) // We do not check the CBB - it was constructed by us above. // Copy the found uid_struct bytes from buffer[] to uid->uidByte[] index = (buffer[2] == PICC_CMD_CT) ? 3 : 2; // source index in buffer[] bytes_to_copy = (buffer[2] == PICC_CMD_CT) ? 3 : 4; for (count = 0; count < bytes_to_copy; count++) { uid->uidByte[uid_index + count] = buffer[index++]; } // Check response SAK (Select Acknowledge) if (responseLength != 3 || txLastBits != 0) { // SAK must be exactly 24 bits (1 byte + CRC_A).Select Acknowledge return STATUS_ERROR; } // Verify CRC_A - do our own calculation and store the control in buffer[2..3] - those bytes are not needed anymore. result = pcd_calculate_crc(responseBuffer, 1, &buffer[2]); if (result != STATUS_OK) { return result; } if ((buffer[2] != responseBuffer[1]) || (buffer[3] != responseBuffer[2])) { return STATUS_CRC_WRONG; } if (responseBuffer[0] & 0x04) { // Cascade bit set - uid_struct not complete yes cascadeLevel++; } else { uidComplete = true; uid->sak = responseBuffer[0]; } } // End of while (!uidComplete) // Set correct uid->size uid->size = 3 * cascadeLevel + 1; return STATUS_OK; } // End picc_select() /** * Instructs a PICC in state ACTIVE(*) to go to state HALT. * * @return STATUS_OK on success, STATUS_??? otherwise. */ status_code picc_halt_a() { status_code result; uint8_t buffer[4]; // Build command buffer buffer[0] = PICC_CMD_HLTA; buffer[1] = 0; // Calculate CRC_A result = pcd_calculate_crc(buffer, 2, &buffer[2]); if (result != STATUS_OK) { return result; } // Send the command. // The standard says: // If the PICC responds with any modulation during a period of 1 ms after the end of the frame containing the // HLTA command, this response shall be interpreted as 'not acknowledge'. // We interpret that this way: Only STATUS_TIMEOUT is a success. result = pcd_transceive_data(buffer, sizeof(buffer), NULL, 0, NULL, 0, false); if (result == STATUS_TIMEOUT) { return STATUS_OK; } if (result == STATUS_OK) { // That is ironically NOT ok in this case ;-) return STATUS_ERROR; } return result; } // End picc_halt_a() /** * Returns a __FlashStringHelper pointer to the PICC type name. * * @return const __FlashStringHelper * */ void picc_get_type_name(picc_type piccType) { /*switch (piccType) { case PICC_TYPE_ISO_14443_4: printf("PICC compliant with ISO/IEC 14443-4\n"); break; case PICC_TYPE_ISO_18092: printf("PICC compliant with ISO/IEC 18092 (NFC)\n");break; case PICC_TYPE_MIFARE_MINI: printf("MIFARE Mini, 320 bytes\n");break; case PICC_TYPE_MIFARE_1K: printf("MIFARE 1KB\n");break; case PICC_TYPE_MIFARE_4K: printf("MIFARE 4KB\n");break; case PICC_TYPE_MIFARE_UL: printf("MIFARE Ultralight or Ultralight C\n");break; case PICC_TYPE_MIFARE_PLUS: printf("MIFARE Plus\n");break; case PICC_TYPE_MIFARE_DESFIRE: printf("MIFARE DESFire\n");break; case PICC_TYPE_TNP3XXX: printf("MIFARE TNP3XXX\n");break; case PICC_TYPE_NOT_COMPLETE: printf("SAK indicates uid_struct is not complete.\n");break; case PICC_TYPE_UNKNOWN: default: printf("Unknown type\n"); }*/ } // End picc_get_type_name() /** * Transmits REQA or WUPA commands. * Beware: When two PICCs are in the field at the same time I often get STATUS_TIMEOUT - probably due do bad antenna design. * * @return STATUS_OK on success, STATUS_??? otherwise. */ status_code picc_reqa_or_wupa( uint8_t command, uint8_t *bufferATQA, uint8_t *bufferSize) { uint8_t valid_bits; status_code status; if (bufferATQA == NULL || *bufferSize < 2) { // The ATQA response is 2 bytes long. //printf("picc_reqa_or_wupa > STATUS_NO_ROOM: %x\n", STATUS_NO_ROOM); return STATUS_NO_ROOM; } pcd_clear_register_bit_mask(CollReg, 0x80); // ValuesAfterColl=1 => Bits received after collision are cleared. valid_bits = 7; // For REQA and WUPA we need the short frame format - transmit only 7 bits of the last (and only) byte. TxLastBits = BitFramingReg[2..0] status = pcd_transceive_data(&command, 1, bufferATQA, bufferSize, &valid_bits, 0, false); if (status != STATUS_OK) { //printf("picc_reqa_or_wupa > status: %x\n", status); return status; } if (*bufferSize != 2 || valid_bits != 0) { // ATQA must be exactly 16 bits. //printf("STATUS_ERROR: %x\n", STATUS_ERROR); return STATUS_ERROR; } return STATUS_OK; } // End picc_reqa_or_wupa() /** * Transmits a REQuest command, Type A. Invites PICCs in state IDLE to go to READY and prepare for anticollision or selection. 7 bit frame. * Beware: When two PICCs are in the field at the same time I often get STATUS_TIMEOUT - probably due do bad antenna design. * * @return STATUS_OK on success, STATUS_??? otherwise. */ status_code picc_request_a( uint8_t *bufferATQA,uint8_t *bufferSize) { return picc_reqa_or_wupa(PICC_CMD_REQA, bufferATQA, bufferSize); } // End picc_request_a() /** * Returns true if a PICC responds to PICC_CMD_REQA. * Only "new" cards in state IDLE are invited. Sleeping cards in state HALT are ignored. * * @return bool */ bool picc_is_new_card_present() { uint8_t bufferATQA[2]; uint8_t bufferSize = sizeof(bufferATQA); // Reset baud rates write_mfrc522(TxModeReg, 0x00); write_mfrc522(RxModeReg, 0x00); // Reset ModWidthReg write_mfrc522(ModWidthReg, 0x26); status_code result = picc_request_a(bufferATQA, &bufferSize); return (result == STATUS_OK || result == STATUS_COLLISION); } // End picc_is_new_card_present() /** * Simple wrapper around picc_select. * Returns true if a uid_struct could be read. * Remember to call picc_is_new_card_present(), picc_request_a() or PICC_WakeupA() first. * The read uid_struct is available in the class variable uid. * * @return bool */ bool picc_read_card_serial() { status_code result = picc_select(&uid,0); return (result == STATUS_OK); } // End status_code pcd_authenticate (uint8_t command, uint8_t blockAddr, MIFARE_Key *key, uid_struct *uid) { uint8_t wait_irq = 0x10; // IdleIRq uint8_t i; // Build command buffer uint8_t send_data[12]; send_data[0] = command; send_data[1] = blockAddr; for ( i = 0; i < MF_KEY_SIZE; i++) { // 6 key bytes send_data[2+i] = key->keyByte[i]; } // Use the last uid_struct bytes as specified in http://cache.nxp.com/documents/application_note/AN10927.pdf // section 3.2.5 "MIFARE Classic Authentication". // The only missed case is the MF1Sxxxx shortcut activation, // but it requires cascade tag (CT) byte, that is not part of uid. for ( i = 0; i < 4; i++) { // The last 4 bytes of the UID send_data[8+i] = uid->uidByte[i+uid->size-4]; } // Start the authentication. return pcd_communicate_tith_picc(pcd_mf_authent, wait_irq, &send_data[0], sizeof(send_data), NULL, NULL, NULL, 0, false); } // End pcd_authenticate() void antenna_on() { uint8_t value ; value = read_mfrc522(TxControlReg); if ((value & 0x03) != 0x03) { write_mfrc522(TxControlReg, value | 0x03); } value = read_mfrc522(TxControlReg); } /* * Initializes the MFRC522 chip. */ bool pcd_initialization() { //printf("pcd_initialization()\n"); mfr_reset_down(); us_delay_spi(2); mfr_reset_up(); us_delay_spi(50000); pcd_reset(); // Reset baud rates write_mfrc522(TxModeReg, 0x00); write_mfrc522(RxModeReg, 0xb0); //Reset ModWidthReg write_mfrc522(ModWidthReg, 0x26); // When communicating with a PICC we need a timeout if something goes wrong. // f_timer = 13.56 MHz / (2*TPreScaler+1) where TPreScaler = [TPrescaler_Hi:TPrescaler_Lo]. // TPrescaler_Hi are the four low bits in TModeReg. TPrescaler_Lo is TPrescalerReg. write_mfrc522(TModeReg, 0x80); // TAuto=1; timer starts automatically at the end of the transmission in all communication modes at all speeds write_mfrc522(TPrescalerReg, 0xA9); // TPreScaler = TModeReg[3..0]:TPrescalerReg, ie 0x0A9 = 169 => f_timer=40kHz, ie a timer period of 25μs. write_mfrc522(TReloadRegH, 0x03); // Reload timer with 0x3E8 = 1000, ie 25ms before timeout. write_mfrc522(TReloadRegL, 0xE8); write_mfrc522(TxASKReg, 0x40); // Default 0x00. Force a 100 % ASK modulation independent of the ModGsPReg register setting write_mfrc522(ModeReg, 0x3D); // Default 0x3F. Set the preset value for the CRC coprocessor for the CalcCRC command to 0x6363 (ISO 14443-3 part 6.2.4) write_mfrc522(RFCfgReg,0x70); write_mfrc522(ComIEnReg,0x80); write_mfrc522(FIFOLevelReg,0x00); antenna_on(); // Enable the antenna driver pins TX1 and TX2 (they were disabled by the reset) //printf("initialization Done()\n"); return 1; } // End pcd_initialization() */