Dmitriy 5fe1e5d358 первый коммит
первый коммит
2021-02-08 21:10:39 +03:00

679 lines
14 KiB
C

#include <includes.h>
#include "uart.h"
#define UART1_RX_BUFSIZE 128
#define UART1_TX_BUFSIZE 64
unsigned char UART1TXBuffer[UART1_TX_BUFSIZE];
unsigned short UART1TXhead = 0;
unsigned short UART1TXtail = 0;
unsigned short UART1TXcount = 0;
unsigned char UART1RXBuffer[UART1_RX_BUFSIZE];
unsigned short UART1RXhead = 0;
unsigned short UART1RXtail = 0;
unsigned short UART1RXcount = 0;
void Uart1_Flush(void)
{
#if OS_CRITICAL_METHOD == 3
OS_CPU_SR cpu_sr = 0;
#endif
OS_ENTER_CRITICAL();
UART1TXcount = UART1TXhead = UART1TXtail = 0;
UART1RXcount = UART1RXhead = UART1RXtail = 0;
U1IER_bit.THREIE = 0;
U1FCR = 0x06;
OS_EXIT_CRITICAL();
}
int Uart1_Getc(void)
{
#if OS_CRITICAL_METHOD == 3
OS_CPU_SR cpu_sr = 0;
#endif
OS_ENTER_CRITICAL();
int res = -1;
if (UART1RXcount > 0)
{
UART1RXcount--;
res = UART1RXBuffer[UART1RXhead++];
UART1RXhead %= UART1_RX_BUFSIZE;
}
OS_EXIT_CRITICAL();
return res;
}
int Uart1_Gotc(void)
{
#if OS_CRITICAL_METHOD == 3
OS_CPU_SR cpu_sr = 0;
#endif
OS_ENTER_CRITICAL();
int res = 0;
if (UART1RXcount > 0) res = 1;
OS_EXIT_CRITICAL();
return res;
}
int Uart1_Ready()
{
#if OS_CRITICAL_METHOD == 3
OS_CPU_SR cpu_sr = 0;
#endif
OS_ENTER_CRITICAL();
int res = 0;
if (UART1TXcount < UART1_TX_BUFSIZE) res = 1;
OS_EXIT_CRITICAL();
return res;
}
int Uart1_Putc(unsigned char ch)
{
#if OS_CRITICAL_METHOD == 3
OS_CPU_SR cpu_sr = 0;
#endif
OS_ENTER_CRITICAL();
int res = 0;
if (UART1TXcount < UART1_TX_BUFSIZE)
{
if (UART1TXcount == 0)
{
if (U1LSR_bit.THRE)
{
U1THR = ch;
}
else
{
UART1TXcount++;
UART1TXBuffer[UART1TXtail++] = ch;
UART1TXtail %= UART1_TX_BUFSIZE;
U1IER = 3;
}
}
else
{
UART1TXcount++;
UART1TXBuffer[UART1TXtail++] = ch;
UART1TXtail %= UART1_TX_BUFSIZE;
U1IER = 3;
}
}
else
{
res = -1;
}
OS_EXIT_CRITICAL();
return res;
}
void Uart1_Isr(void)
{
CPU_INT08U IIRValue;
CPU_INT08U u1lsr;
volatile CPU_INT08U Dummy;
IIRValue = U1IIR;
IIRValue >>= 1; /* skip pending bit in IIR */
IIRValue &= 0x07; /* check bit 1~3, interrupt identification */
if (IIRValue == 2) /* Receive Data Available */
{
/* Receive Data Available */
if (U1LSR_bit.DR)
{
if (UART1RXcount < UART1_RX_BUFSIZE)
{
UART1RXBuffer[UART1RXtail++] = U1RBR;
UART1RXtail %= UART1_RX_BUFSIZE;
UART1RXcount++;
}
else
{
Dummy = U1RBR;
}
}
}
else if (IIRValue == 1) /* THRE, transmit holding register empty */
{
/* THRE interrupt */
if (UART1TXcount > 0)
{
U1THR = UART1TXBuffer[UART1TXhead++];
UART1TXhead %= UART1_TX_BUFSIZE;
UART1TXcount--;
}
else
{
U1IER = 1;
}
}
else
{
Dummy = U1RBR;
u1lsr = U1LSR;
u1lsr = u1lsr;
}
}
void Uart1_Init(CPU_INT32U baud_rate)
{
float div_fp; /* Baud rate divisor floating point precision */
CPU_INT16U div_int; /* Baud rate divisor floating point precision */
CPU_INT08U divlo;
CPU_INT08U divhi;
CPU_INT32U pclk_freq;
#if OS_CRITICAL_METHOD == 3 /* Allocate storage for CPU status register */
OS_CPU_SR cpu_sr = 0;
#endif
OS_ENTER_CRITICAL();
pclk_freq = BSP_CPU_PclkFreq(PCLK_UART1); /* Get peripheral clock frequency */
div_fp = (pclk_freq / 16.0 / baud_rate); /* Compute divisor for desired baud rate */
div_int = (CPU_INT16U)(div_fp + 0.5); /* Round the number up */
divlo = div_int & 0x00FF; /* Split divisor into LOW and HIGH bytes */
divhi = (div_int >> 8) & 0x00FF;
PCONP_bit.PCUART1 = 1; /* Enable the power bit for UART0 */
U1IER = 0;
U1FCR = 0x06; // enable and reset fifo
U1MCR = 0;
U1ACR = 0;
//U1FCR = 0x01; // enable and reset fifo
U1LCR = 0x80; /* Enable acces to Divisor latches */
U1DLL = divlo; /* Load divisor */
U1DLM = divhi;
U1FDR = 0x10;
U1LCR = 0;
U1LCR_bit.WLS = 0x03; // 8 bit
U1LCR_bit.SBS = 0; // 1 stop bit
U1IER = 1;
PINSEL4_bit.P2_0 = 0x2;
PINSEL4_bit.P2_1 = 0x2;
PINMODE4_bit.P2_0 = 0;
PINMODE4_bit.P2_1 = 0;
FIO2DIR_bit.P2_0 = 1;
FIO2DIR_bit.P2_1 = 0;
FIO2MASK_bit.P2_0 = 1;
FIO2MASK_bit.P2_1 = 1;
VICINTSELECT &= ~(1 << VIC_UART1);
VICVECTADDR7 = (CPU_INT32U)Uart1_Isr;
VICINTENABLE = (1 << VIC_UART1);
Uart1_Flush();
OS_EXIT_CRITICAL();
}
#define UART2_RX_BUFSIZE 128
#define UART2_TX_BUFSIZE 64
unsigned char UART2TXBuffer[UART2_TX_BUFSIZE];
unsigned short UART2TXhead = 0;
unsigned short UART2TXtail = 0;
unsigned short UART2TXcount = 0;
unsigned char UART2RXBuffer[UART2_RX_BUFSIZE];
unsigned short UART2RXhead = 0;
unsigned short UART2RXtail = 0;
unsigned short UART2RXcount = 0;
void Uart2_Flush(void)
{
#if OS_CRITICAL_METHOD == 3
OS_CPU_SR cpu_sr = 0;
#endif
OS_ENTER_CRITICAL();
UART2TXcount = UART2TXhead = UART2TXtail = 0;
UART2RXcount = UART2RXhead = UART2RXtail = 0;
U2IER_bit.THREIE = 0;
U2FCR = 0x06;
OS_EXIT_CRITICAL();
}
int Uart2_Getc(void)
{
#if OS_CRITICAL_METHOD == 3
OS_CPU_SR cpu_sr = 0;
#endif
OS_ENTER_CRITICAL();
int res = -1;
if (UART2RXcount > 0)
{
UART2RXcount--;
res = UART2RXBuffer[UART2RXhead++];
UART2RXhead %= UART2_RX_BUFSIZE;
}
OS_EXIT_CRITICAL();
return res;
}
int Uart2_Gotc(void)
{
#if OS_CRITICAL_METHOD == 3
OS_CPU_SR cpu_sr = 0;
#endif
OS_ENTER_CRITICAL();
int res = 0;
if (UART2RXcount > 0) res = 1;
OS_EXIT_CRITICAL();
return res;
}
int Uart2_Ready()
{
#if OS_CRITICAL_METHOD == 3
OS_CPU_SR cpu_sr = 0;
#endif
OS_ENTER_CRITICAL();
int res = 0;
if (UART2TXcount < UART2_TX_BUFSIZE) res = 1;
OS_EXIT_CRITICAL();
return res;
}
int Uart2_Putc(unsigned char ch)
{
#if OS_CRITICAL_METHOD == 3
OS_CPU_SR cpu_sr = 0;
#endif
OS_ENTER_CRITICAL();
int res = 0;
if (UART2TXcount < UART2_TX_BUFSIZE)
{
if (UART2TXcount == 0)
{
if (U2LSR_bit.THRE)
{
U2THR = ch;
}
else
{
UART2TXcount++;
UART2TXBuffer[UART2TXtail++] = ch;
UART2TXtail %= UART2_TX_BUFSIZE;
U2IER = 3;
}
}
else
{
UART2TXcount++;
UART2TXBuffer[UART2TXtail++] = ch;
UART2TXtail %= UART2_TX_BUFSIZE;
U2IER = 3;
}
}
else
{
res = -1;
}
OS_EXIT_CRITICAL();
return res;
}
void Uart2_Isr(void)
{
CPU_INT08U IIRValue;
CPU_INT08U u1lsr;
volatile CPU_INT08U Dummy;
IIRValue = U2IIR;
IIRValue >>= 1; /* skip pending bit in IIR */
IIRValue &= 0x07; /* check bit 1~3, interrupt identification */
if (IIRValue == 2) /* Receive Data Available */
{
/* Receive Data Available */
if (U2LSR_bit.DR)
{
if (UART2RXcount < UART2_RX_BUFSIZE)
{
UART2RXBuffer[UART2RXtail++] = U2RBR;
UART2RXtail %= UART2_RX_BUFSIZE;
UART2RXcount++;
}
else
{
Dummy = U2RBR;
}
}
}
else if (IIRValue == 1) /* THRE, transmit holding register empty */
{
/* THRE interrupt */
if (UART2TXcount > 0)
{
U2THR = UART2TXBuffer[UART2TXhead++];
UART2TXhead %= UART2_TX_BUFSIZE;
UART2TXcount--;
}
else
{
U2IER = 1;
}
}
else
{
Dummy = U2RBR;
u1lsr = U2LSR;
u1lsr = u1lsr;
}
}
void Uart2_Init(CPU_INT32U baud_rate)
{
float div_fp; /* Baud rate divisor floating point precision */
CPU_INT16U div_int; /* Baud rate divisor floating point precision */
CPU_INT08U divlo;
CPU_INT08U divhi;
CPU_INT32U pclk_freq;
#if OS_CRITICAL_METHOD == 3 /* Allocate storage for CPU status register */
OS_CPU_SR cpu_sr = 0;
#endif
OS_ENTER_CRITICAL();
pclk_freq = BSP_CPU_PclkFreq(PCLK_UART2); /* Get peripheral clock frequency */
div_fp = (pclk_freq / 16.0 / baud_rate); /* Compute divisor for desired baud rate */
div_int = (CPU_INT16U)(div_fp + 0.5); /* Round the number up */
divlo = div_int & 0x00FF; /* Split divisor into LOW and HIGH bytes */
divhi = (div_int >> 8) & 0x00FF;
PCONP_bit.PCUART2 = 1; /* Enable the power bit for UART0 */
U2IER = 0;
U2FCR = 0x06; // enable and reset fifo
U2ACR = 0;
//U1FCR = 0x01; // enable and reset fifo
U2LCR = 0x80; /* Enable acces to Divisor latches */
U2DLL = divlo; /* Load divisor */
U2DLM = divhi;
U2FDR = 0x10;
U2LCR = 0;
U2LCR_bit.WLS = 0x03; // 8 bit
U2LCR_bit.SBS = 0; // 1 stop bit
U2IER = 1;
PINSEL0_bit.P0_10 = 0x1;
PINSEL0_bit.P0_11 = 0x1;
PINMODE0_bit.P0_10 = 0;
PINMODE0_bit.P0_11 = 0;
FIO0DIR_bit.P0_10 = 1;
FIO0DIR_bit.P0_11 = 0;
FIO0MASK_bit.P0_10 = 1;
FIO0MASK_bit.P0_11 = 1;
VICINTSELECT &= ~(1 << VIC_UART2);
VICVECTADDR28 = (CPU_INT32U)Uart2_Isr;
VICINTENABLE = (1 << VIC_UART2);
Uart2_Flush();
OS_EXIT_CRITICAL();
}
void Uart0_Flush(void)
{
U0FCR = 0x06;
}
int Uart0_Getc(void)
{
int res = -1;
if (U0LSR_bit.DR) res = U0RBR;
return res;
}
int Uart0_Gotc(void)
{
int res = 0;
if (U0LSR_bit.DR) res = 1;
return res;
}
int Uart0_Ready()
{
int res = 0;
if (U0LSR_bit.THRE) res = 1;
return res;
}
int Uart0_Putc(unsigned char ch)
{
int res = 0;
while (U0LSR_bit.THRE == 0)
{
OSTimeDly(1);
}
U0THR = ch;
return res;
}
void Uart0_Init(CPU_INT32U baud_rate)
{
float div_fp; /* Baud rate divisor floating point precision */
CPU_INT16U div_int; /* Baud rate divisor floating point precision */
CPU_INT08U divlo;
CPU_INT08U divhi;
CPU_INT32U pclk_freq;
#if OS_CRITICAL_METHOD == 3 /* Allocate storage for CPU status register */
OS_CPU_SR cpu_sr = 0;
#endif
OS_ENTER_CRITICAL();
pclk_freq = BSP_CPU_PclkFreq(PCLK_UART0); /* Get peripheral clock frequency */
div_fp = (pclk_freq / 16.0 / baud_rate); /* Compute divisor for desired baud rate */
div_int = (CPU_INT16U)(div_fp + 0.5); /* Round the number up */
divlo = div_int & 0x00FF; /* Split divisor into LOW and HIGH bytes */
divhi = (div_int >> 8) & 0x00FF;
PCONP_bit.PCUART0 = 1; /* Enable the power bit for UART0 */
U0IER = 0;
U0FCR = 0x06; // enable and reset fifo
U0ACR = 0;
U0LCR = 0x80; /* Enable acces to Divisor latches */
U0DLL = divlo; /* Load divisor */
U0DLM = divhi;
U0FDR = 0x10;
U0LCR = 0;
U0LCR_bit.WLS = 0x03; // 8 bit
U0LCR_bit.SBS = 0; // 1 stop bit
U0IER = 1;
PINSEL0_bit.P0_2 = 0x1;
PINSEL0_bit.P0_3 = 0x1;
PINMODE0_bit.P0_2 = 0;
PINMODE0_bit.P0_3 = 0;
FIO0DIR_bit.P0_2 = 1;
FIO0DIR_bit.P0_3 = 0;
FIO0MASK_bit.P0_2 = 1;
FIO0MASK_bit.P0_3 = 1;
Uart0_Flush();
OS_EXIT_CRITICAL();
}
void InitUart(CPU_INT08U uart_index, CPU_INT32U uart_speed)
{
switch (uart_index){
case UART_NUMBER_0:
// #0
Uart0_Init(uart_speed);
break;
case UART_NUMBER_1:
// #1
Uart1_Init(uart_speed);
break;
case UART_NUMBER_2:
// #2
Uart2_Init(uart_speed);
break;
case UART_NUMBER_3:
break;
}
}
void UartFlush(CPU_INT08U uart_index)
{
switch (uart_index){
case UART_NUMBER_0:
// #0
Uart0_Flush();
break;
case UART_NUMBER_1:
// #1
Uart1_Flush();
break;
case UART_NUMBER_2:
// #2
Uart2_Flush();
break;
case UART_NUMBER_3:
break;
}
}
int UartGotc(CPU_INT08U uart_index)
{
switch (uart_index){
case UART_NUMBER_0:
// #0
return Uart0_Gotc();
case UART_NUMBER_1:
// #1
return Uart1_Gotc();
case UART_NUMBER_2:
// #2
return Uart2_Gotc();
case UART_NUMBER_3:
break;
}
return 0;
}
int UartGetc(CPU_INT08U uart_index)
{
switch (uart_index){
case UART_NUMBER_0:
// #0
return Uart0_Getc();
case UART_NUMBER_1:
// #1
return Uart1_Getc();
case UART_NUMBER_2:
// #2
return Uart2_Getc();
case UART_NUMBER_3:
break;
}
return 0;
}
int UartReady(CPU_INT08U uart_index)
{
switch (uart_index){
case UART_NUMBER_0:
// #0
return Uart0_Ready();
case UART_NUMBER_1:
// #1
return Uart1_Ready();
case UART_NUMBER_2:
// #2
return Uart2_Ready();
case UART_NUMBER_3:
break;
}
return 0;
}
int UartPutc(CPU_INT08U uart_index, CPU_INT08U ch)
{
switch (uart_index){
case UART_NUMBER_0:
// #0
return Uart0_Putc(ch);
case UART_NUMBER_1:
// #1
return Uart1_Putc(ch);
case UART_NUMBER_2:
// #2
return Uart2_Putc(ch);
case UART_NUMBER_3:
break;
}
return 0;
}